# Spin and Deflection Measurements of Microwave-Driven Sails

# John Ziemer Jet Propulsion Laboratory

James Benford, Microwave Sciences, Inc.
Gregory Benford, Abbenford, Inc.
Timothy Knowles, Energy Science Laboratories, Inc.

Keith Goodfellow, Raul Perez, and Henry Harris

Jet Propulsion Laboratory









#### Overview

#### Spin Measurements

Spinning sails is useful for stability and deployment

- Sail material properties: Type A
- Testing facility and procedure
- Results: movies and coupling coefficient measurements

#### Pendulum Deflection Measurements

Measure deflection vs. power to investigate acceleration mechanism

- Sail material properties: Type B
- Results: movies and deflection as as function of power









# Carbon Sail Material Type A

ESLI MW-Sail Concept\*

- 3D Architecture
  - Thick porous sandwich
    - Surface net + truss core
    - Stiff and lightweight
- Carbon-carbon materials
  - Carbon-fiber, carbon nodes
    - Strong, conductive, creep-resistant
    - High temperature capability











# Microwave Sail Test Facility





**ESLI** 





## Spin Movies

Aluminum Disk with slot

Power: 100 W

Carbon Cone, no slot

Power: 50 W

QuickTime<sup>TM</sup> and a Sorenson Video decompressor are needed to see this picture. QuickTime<sup>TM</sup> and a Sorenson Video decompressor are needed to see this picture.









# Results from Spin Experiments







$$I_{q} \mathbf{q} = T_{spring} + T_{damping} + T_{applied}$$
$$= -k_{q} \mathbf{q} - \mathbf{n} \mathbf{q} + aI_{q} P$$

$$a = \frac{\mathbf{q}_{steady} \mathbf{w}_n^2}{P}$$
  $C^* = a \mathbf{pnl}_q = \frac{\mathbf{pnq}_{steady} k_q}{P}$ 

| Sail Shape<br>and<br>Material | Radial cut? | Does it Spin? | Coupling C*          |
|-------------------------------|-------------|---------------|----------------------|
| Al "roof"                     | no          | yes           | 0.03                 |
| Al disk                       | no          | no            | The second second    |
| Al disk                       | yes         | Yes           | 3 x 10 <sup>-4</sup> |
| Al cone                       | no          | no            |                      |
| Al cone                       | yes         | yes           | 0.11                 |
| C disk                        | no          | yes, erratic  |                      |
| Cone                          | no          | yes           | 0.10                 |



**ESLI** 



ABBENO RNOC

### Carbon Sail Pendulum

Pendulum is made of type B material: fibers are orientated along arm length

DC sheet resistance:

 $\sim 1\Omega/square$ 

Mass: 0.093 g

Emissivity: > 0.7





**ESLI** 





### Carbon Pendulum Movies

- Power varied from 4-14.5 kW in 10 second trials
- Position determined by digital video processing software

QuickTime<sup>TM</sup> and a Sorenson Video decompressor are needed to see this picture. QuickTime<sup>TM</sup> and a Sorenson Video decompressor are needed to see this picture.









## **Deflection Measurements**



Position measurement limited by single pixel resolution

Deflection is nearly linear with power



**ESLI** 

$$F = \frac{\ell_{cm}}{\ell_{cf}} mg \sin \mathbf{q}$$

$$F_{photon} = \frac{\mathbf{h}_{power} P}{c} (2 - \mathbf{a}) \cos^2 \mathbf{q}$$



## Conclusions

#### **Spin Measurements:**

- Carbon sail coupling coefficient (efficiency) is about 10%
- Aluminum sails do not spin if they are circularly symmetric
- Disturbing the circular symmetry causes aluminum sails to spin
- Shape is important for sails when diameter is on the order of the wavelength
- General behavior of sails under electrodynamic torques did fit expectations

#### **Deflection Measurements:**

- Type B material is highly reflective with good thermal conductivity
- Pendulum experiments showed a linear deflection with input power
- Pendulum behaves as expected for 25-30% of beam power incident on sail









# Acceleration is Temperature Limited

#### Microwave Sail Acceleration

· T-limited acceleration, a, given by

$$\alpha I = 2\varepsilon\sigma_{\rm in}T^{\rm i} \qquad \alpha = 4R/Z_{\rm i}$$

$$\alpha \approx \frac{2I}{c\sigma} \approx \frac{4\sigma_{SR}}{c} \frac{\varepsilon}{\alpha} \frac{T^{\rm i}}{\sigma} \approx \frac{Z_{\rm i}\sigma_{SR}}{c} \frac{\varepsilon}{R} \frac{T^{\rm i}}{\sigma}$$

$$I = \text{intensity (W/m2)} \qquad \text{is = emissivity}$$

$$\alpha = \text{absorptivity}$$

$$\alpha = \text{absorptivity}$$

$$R = \text{sheet resistance ($\Omega$)} \qquad Z_{\rm i} = 377 \Omega$$

Carbon with high specific conductivity best





